Dimer Formation Enhances Structural Differences between Amyloid β-Protein (1–40) and (1–42): An Explicit-Solvent Molecular Dynamics Study

نویسندگان

  • Bogdan Barz
  • Brigita Urbanc
چکیده

Amyloid β-protein (Aβ) is central to the pathology of Alzheimer's disease. A 5% difference in the primary structure of the two predominant alloforms, Aβ(1-40) and Aβ(1-42), results in distinct assembly pathways and toxicity properties. Discrete molecular dynamics (DMD) studies of Aβ(1-40) and Aβ(1-42) assembly resulted in alloform-specific oligomer size distributions consistent with experimental findings. Here, a large ensemble of DMD-derived Aβ(1-40) and Aβ(1-42) monomers and dimers was subjected to fully atomistic molecular dynamics (MD) simulations using the OPLS-AA force field combined with two water models, SPCE and TIP3P. The resulting all-atom conformations were slightly larger, less compact, had similar turn and lower β-strand propensities than those predicted by DMD. Fully atomistic Aβ(1-40) and Aβ(1-42) monomers populated qualitatively similar free energy landscapes. In contrast, the free energy landscape of Aβ(1-42) dimers indicated a larger conformational variability in comparison to that of Aβ(1-40) dimers. Aβ(1-42) dimers were characterized by an increased flexibility in the N-terminal region D1-R5 and a larger solvent exposure of charged amino acids relative to Aβ(1-40) dimers. Of the three positively charged amino acids, R5 was the most and K16 the least involved in salt bridge formation. This result was independent of the water model, alloform, and assembly state. Overall, salt bridge propensities increased upon dimer formation. An exception was the salt bridge propensity of K28, which decreased upon formation of Aβ(1-42) dimers and was significantly lower than in Aβ(1-40) dimers. The potential relevance of the three positively charged amino acids in mediating the Aβ oligomer toxicity is discussed in the light of available experimental data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation of Amyloid β Dimer Formation

Recent experiments with amyloid-β (Aβ) peptide suggest that formation of toxic oligomers may be an important contribution to the onset of Alzheimer’s disease. The toxicity of Aβ oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. We introduc...

متن کامل

Structural basis for Aβ1–42 toxicity inhibition by Aβ C-terminal fragments: discrete molecular dynamics study.

Amyloid β-protein (Aβ) is central to the pathology of Alzheimer's disease. Of the two predominant Aβ alloforms, Aβ(1-40) and Aβ(1-42), the latter forms more toxic oligomers. C-terminal fragments (CTFs) of Aβ were recently shown to inhibit Aβ(1-42) toxicity in vitro. Here, we studied Aβ(1-42) assembly in the presence of three effective CTF inhibitors and an ineffective fragment, Aβ(21-30). Using...

متن کامل

Molecular dynamics simulation of amyloid beta dimer formation.

Recent experiments with amyloid beta (Abeta) peptide indicate that formation of toxic oligomers may be an important contribution to the onset of Alzheimer's disease. The toxicity of Abeta oligomers depends on their structure, which is governed by assembly dynamics. Due to limitations of current experimental techniques, a detailed knowledge of oligomer structure at the atomic level is missing. W...

متن کامل

Amide solvent protection analysis demonstrates that amyloid-β(1–40) and amyloid-β(1–42) form different fibrillar structures under identical conditions

AD (Alzheimer’s disease) is a neurodegenerative disorder characterized by self-assembly and amyloid formation of the 39–43 residue long Aβ (amyloid-β)-peptide. The most abundant species, Aβ(1–40) and Aβ(1–42), are both present within senile plaques, but Aβ(1–42) peptides are considerably more prone to selfaggregation and are also essential for the development of AD. To understand the molecular ...

متن کامل

Molecular Dynamics and Molecular Docking Studies on the Interaction between Four Tetrahydroxy Derivatives of Polyphenyls and Beta Amyloid

Interactions of 3,3',4,4'-tetrahydroxybiphenyl (BPT) and three isomeric 3,3",4,4"-tetrahydroxyterphenyls (OTT, MTT, PTT) with Alzheimer’s amyloid-β peptide (Aβ) were studied by molecular dynamics simulation and molecular docking. Structural parameters such as Root-mean-square derivations (RMSD), radial distribution function (RDF), helix percentage and other physical parameters were obtained. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012